An Extension Theorem for Weighted Ricci Curvature on Finsler Manifolds
نویسندگان
چکیده
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملPositive Ricci Curvature on Highly Connected Manifolds
For k ≥ 2, let M4k−1 be a closed (2k−2)-connected manifold. If k ≡ 1 mod 4 assume further that M is (2k−1)-parallelisable. Then there is a homotopy sphere Σ4k−1 such that M]Σ admits a Ricci positive metric. This follows from a new description of these manifolds as the boundaries of explicit plumbings.
متن کاملGalloway’s compactness theorem on Finsler manifolds
The compactness theorem of Galloway is a stronger version of the Bonnet-Myers theorem allowing the Ricci scalar to take also negative values from a set of real numbers which is bounded below. In this paper we allow any negative value for the Ricci scalar, and adding a condition on its average, we find again that the manifold is compact and provide an upper bound of its diameter. Also, with no c...
متن کاملNon-negative Ricci Curvature on Closed Manifolds under Ricci Flow
In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...
متن کاملMetric Ricci curvature for $PL$ manifolds
We introduce a metric notion of Ricci curvature for PL manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers Theorem, for surfaces as well as for a large class of higher dimensional manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cumhuriyet Science Journal
سال: 2019
ISSN: 2587-2680
DOI: 10.17776/csj.618537